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ABSTRACT 

Los Alamos National Laboratory (LANL), in 
cooperation with Southwest Research Institute, has 
been developing capabilities to provide reliability-
based structural evaluation techniques for performing 
weapon component and system reliability assessments. 
The development and applications of Probabilistic 
Structural Analysis Methods (PSAM) is an important 
ingredient in the overall weapon reliability 
assessments. Focus, herein, is placed on the 
uncertainty quantification associated with the structural 
response of a containment vessel for high-explosive 
(HE) experiments. The probabilistic dynamic response 
of the vessel is evaluated through the coupling of the 
probabilistic code NESSUS[1] with the non-linear 
structural dynamics code, DYNA-3D[2]. The 
probabilistic model includes variations in geometry and 
mechanical properties, such as Young’s Modulus, yield 
strength, and material flow characteristics. Finally, the 
probability of exceeding a specified strain limit, which 
is related to vessel failure, is determined. 

INTRODUCTION 

Over the past 30 years, Los Alamos National 
Laboratory (LANL), under the auspices of the U.S. 
Department of Energy, has been conducting confined 
high explosion experiments utilizing large, spherical, 
steel pressure vessels. Design of these spherical 
vessels was originally accomplished by maintaining 
that the vessel’s kinetic energy, developed from the 
detonation impulse loading, be equilibrated by the 
elastic strain energy inherent in the vessel. Within the 
last decade, designs have been accomplished utilizing 
sophisticated and advanced 3D computer codes that 
address both the detonation hydrodynamics and the 
vessel’s highly nonlinear structural response. 

Cylindrical and spherical pressure vessels are used to 
contain the effects of high explosions. In some cases, 
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the vessel is designed for one-time use only, efficiently 
utilizing the significant plastic energy absorption 
capability of ductile vessel materials[3]. Alternatively,
the vessel can be designed for multiple use, in which 
case the material response is restricted to the elastic 
range[4]. 

Understanding of the dynamic events under detonation 
conditions is the first step towards the development of a 
rational pressure vessel design criteria. The multiple-
use pressure vessels must, in effect, be designed with 
similar rules as those in Section III or VIII of the 
ASME Boiler & Pressure Vessel Code, hereafter 
referred to as the ASME Code. That is, it becomes 
imperative to the designer to maintain a purely elastic 
membrane response of the structural system.  On the 
other hand, Environment, Safety, and Health (ESH)
issues, such as waste-stream isolation, and clean-up 
costs associated with HE detonations within vessels, 
may be prohibitively expensive because of hazardous 
materials that may be present.  In this scenario, the 
pressure vessel design is driven to a “single-use” mode, 
dictating that a more cost-effective design must be 
developed.  The designer must start with a rational 
ductile failure design criterion that utilizes the plastic 
reserve capacity in providing structural margin. As 
such, quantifying uncertainties associated with loading
functions, geometry (i.e., radius and thickness),
fabrication, and material properties is of paramount 
importance when the design of these containment 
vessels is within the plastic regime. 

The containment vessel illustrated is a 6-ft inside 
diameter, manufactured from HSLA-100 steel, 
spherical vessel. Results are presented herein for a 
particular explosive test, with probability density
functions describing the vessel radius and thickness, 
and material parameters. No attempt is made, in this 
paper, to describe the loading function on a 
probabilistic basis. This will be accomplished in an 
upcoming study describing the variation of HE mass 
resulting in pressure-time history PDF. 
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The containment vessel is shown in Fig. 1, and consists 
of a minimum 2.0-in wall thickness HSLA-100 
spherical shell with three ports. It is subjected to the 
transient pressure loading for a quantity of HE, up to a 
maximum charge size of 40 lbs. equivalent TNT. 

Figure 1: LANL 6-ft. ID containment vessel. 

1. DESCRIPTION OF CONTAINMENT VESSEL 

The containment vessel is a spherical vessel with three 
access ports: two 16-inch ports aligned in one axis on 
the sides of the vessel and a single 22-inch port at the 
top “north pole” of the vessel. The vessel has an inside 
diameter of 72 inches and a 2 inch nominal wall 
thickness. The vessel is fabricated from HSLA-100 
steel, chosen for its high strength, high fracture 
toughness, and no requirement for post weld heat 
treatment. 

The vessel’s three ports must maintain a seal during use 
to prevent any release of reaction product gases or
material to the external environment. Each door is 
connected to the vessel with 64 high strength bolts, and 
four separate seals at each door ensure a positive 
pressure seal. 

2.  DETERMINSTIC ANALYSIS 

A series of hydrodynamic and structural analyses of the 
spherical containment vessel were performed using a 
combination of two numerical techniques.  Using an 
uncoupled approach, the transient pressures acting on 
the inner surface of the vessel were computed using the 
Eulerian hydrodynamics code, CTH, which simulated 
the HE burn, the internal gas dynamics, and shock 
wave propagation. The HE was modeled as spherically 
symmetric with the initiating burn taking place at the 
center of the sphere. The vessel’s structural response to 

these pressures was then analyzed[5] using the DYNA-
3D explicit finite element structural dynamics code. In 
this section, we summarize the results of the structural 
analysis of the confinement vessel subjected to a 40 lb. 
HE charge detonation of PBX-9501 ignited at the 
center of the vessel. 

The simulation required the use of a large, detailed 
mesh to accurately represent the dynamic response of
the vessel and to adequately resolve the stresses and 
discontinuities caused by various engineering features 
such as the bolts connecting the doors to their nozzles. 
Taking advantage of two planes of symmetry, one 
quarter of the structure was meshed using 
approximately one million hex elements. Six hex 
elements were used through the 2-inch wall thickness 
to accurately simulate the bending behavior of the 
vessel wall. The one-quarter symmetry model is shown 
in Figure 2. The structural response simulation used an 
explicit finite element code called PARADYN, which 
is a massively parallel version of DYNA-3D, a 
nonlinear, explicit Lagrangian finite element analysis
code for three-dimensional transient structural 
mechanics. PARADYN was run on 504 processors of 
Los Alamos National Laboratory’s Accelerated 
Strategic Computing Initiative platform “Blue 
Mountain,” which is an interconnected array of 
independent SGI (Silicon Graphics, Inc.) computers. 
The containment vessel can be handled on Blue 
Mountain computer with approximately 2.5 hours of 
run time. The same analysis would have taken about 
35 days when run on a single processor. 

Figure 2: One quarter symmetry mesh used for the 
structural analysis. 

The pressure-time history used for the 40 lb HE load 
case, as shown in Figure 3, was calculated for a 
duration of approximately 7 ms, which is more than 
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Confinement Vessel 

t=3.09999e-03 

sufficient to cover the initial blast loading and several 
subsequent reverberations inside of the vessel. 
Confirmatory analyses have shown[6,7] that a smaller 
duration (~ 2-ms) is adequate to represent the initial 
impulse loading providing the driving energy to the 
vessel. After the 7 ms of computed pressure loading, 
the pressure inside the vessel was taken as constant, 
that being the residual quasi-static pressure resulting
from the expansion of reaction product gases. 
Numerical computations for the structural analysis
were carried out to 20 ms duration, a time considered 
far enough removed from the initial pressure spike to 
capture the peak dynamic response. The vessel initially
deforms in a “breathing mode,” an almost uniform 
radial expansion of the entire vessel and ports. Because 
of the asymmetry of the vessel’s ports, in terms of mass 
and stiffness, the breathing mode degenerates after a 
couple of cycles into a more complex combination of 
bending/extensional modes as shown in Figure 4. 

Figure 3: Pressure time history for the center detonated 
40 lb HE load case. 
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Figure 4: Structural response of the containment vessel. 

Stresses caused by high-order bending modes, during
the time history, are significantly greater than the 
stresses caused by the initial breathing response. Even 
well after the initial load and unload, the dynamic stress 
waves propagate through the vessel, and at certain 
times, combine to cause plastic straining in the vessel 
wall.  Pure membrane stresses are developed only
during the initial vessel response, the breathing mode. 
As shown in Figure 5, a unique combination of 
localized bending and membrane stresses causes a 
small amount of plastic strain to occur at the bottom of 
the vessel at 5 ms. 

Figure 5: Plastic strain occurs at the bottom of the 
confinement vessel for the 40 lb HE load case. 

3. PROBABILISTIC ANALYSIS 

After investigation of the deterministic response of the 
vessel and where maximum responses occurred, the 
equivalent plastic strain at the bottom of the vessel was 
selected as the response metric. To quantify the 
uncertainty associated with the plastic strain occurring
at the bottom of the containment vessel, a probabilistic 
analysis was performed with the vessel geometry and 
material properties as random variables. 

Efficient probabilistic methods were used to calculate 
the probabilistic response of the containment vessel[8]. 
These methods have been primarily developed for 
complex computational systems requiring time-
consuming calculations, the results of which have been 
shown to approach the exact solution obtained from 
traditional Monte Carlo methods using significantly
fewer function evaluations [9]. 
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Most Probable Point (MPP) Methods 

A class of probabilistic methods based on the most 
probable point  (MPP) are becoming routinely used as a 
means of reducing the number of g-function 
evaluations from that of brute-force Monte Carlo 
simulation. Although many variations have been 
proposed, the best-known and most widely-used MPP-
based methods include the first-order reliability method 
(FORM) [9], second-order reliability method (SORM) [9], 
and advanced mean value (AMV) [10]. 

The basic steps involved in MPP-based methods are as 
follows: (1) Obtain an approximate fit to the exact g-
function at X*, where X* is initially the mean random 
variable values; (2) Transform the original, non-normal 
random variables into independent, normal random 
variables u [9]; (3) Calculate the minimum distance, β 
(or safety index), from the origin of the joint PDF. to 
the limit state surface, g = 0. This point, u*, on the 
limit state surface is the most probable point (MPP) in
the u-space; (4) Approximate the g-function g(u) at u* 
using a first or second-order polynomial function; and 
(5) Solve the resulting problem using available 
analytical solutions [9]. 

Step (1), which involves evaluating the g-function, 
represents the main computational burden in the above 
steps. Once a polynomial expression for the g-function 
is established, it is a numerically simple task to 
compute the failure probability and associated MPP. 
Because of this, the complete response CDF can be 
computed very quickly by repeating steps (2)-(4) for 
different z0 values. The resulting locus of MPP’s is 
efficiently used in the advanced mean value algorithm
(discussed next) to iteratively improve the probability
estimates in the tail regions. 

Advanced Mean Value (AMV) Method 
The advanced mean value class of methods are most 
suitable for complicated but well-behaved response 
functions requiring computationally-intensive 
calculations. Assuming that the response function is 
smooth and a Taylor's series expansion of Z exists at 
the mean values, the mean value Z-function can be 
expressed as 

n 

( )+ ∑ ∂Z ( )ZMV = Z µ 
i =1 ∂Xi 

µi 
(Xi − µi )+ H X 

(1) 

where ZMV is a random variable representing the sum of 
the first order terms and H(X) represents the higher-
order terms. 

For nonlinear response functions, the MV first-order 
solution obtained by using Equation 1 may not be 
sufficiently accurate. For simple problems, it is 
possible to use higher-order expansions to improve the 
accuracy. For example, a mean-value second-order 
solution can be obtained by retaining second-order 
terms in the series expansion.  However, for problems 
involving implicit functions and large n, the higher-
order approach becomes difficult and inefficient. 

The AMV method improves upon the MV method by
using a simple correction procedure to compensate for 
the errors introduced from the truncation of the Taylor's 
series. The AMV model is defined as 

(ZAMV = ZMV + H ZMV ) (2) 

where H(ZMV) is defined as the difference between the 
values of ZMV and Z calculated at the Most Probable 
Point Locus (MPPL) of ZMV , which is defined by 
connecting the MPP's for different z0 values.  The AMV 
method reduces the truncation error by replacing the 
higher-order terms H(X) by a simplified function 
H(ZMV). As a result of this approximation, the 
truncation error is not optimum; however, because the 
Z-function correction points are usually close to the 
exact MPP's, the AMV solution provides a reasonably 
good solution. 

The AMV solution can be improved by using an 
improved expansion point, which can be done typically
by an optimization procedure or an iteration procedure. 
Based initially on ZMV  and by keeping track of the 
MPPL, the exact MPP for a particular limit state Z(X) - z0 
can be computed to establish the AMV+ model, which is 
defined as 

n 

ZAMV + = Z X * 
i=1 ∂Xi 

( )( )+∑ ∂Z 
Xi 

* (Xi − χi 
*)+ H X 

(3)
where X* is the converged MPP. The AMV-based 
methods have been implemented in NESSUS and 
validated using numerous problems [9,10]. 

Probabilistic Sensitivity Analysis 
For design purposes, it is important to know which 
problem parameters are the most important and the 
degree to which they control the design. This can be 
accomplished by performing sensitivity analyses. In a 
deterministic analysis where each problem variable is 
single-valued, design sensitivities can be computed that 
quantify the change in the performance measure due to 
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a change in the parameter value, i.e., ∂Z/∂Xi. As stated 
earlier, each random input variable is characterized by 
a mean value, a standard deviation, and a distribution 
type. That is, three parameters are defined as opposed 
to just one. The performance measure is the 
exceedance probability (or safety index). Sensitivity 
measures are needed then to reflect the relative 
importance of each of the probabilistic parameters on 
the probability of exceedance. NESSUS computes 
probabilistic based sensitivities for both MPP and 
sampling based methods; details are given by Thacker 
[8]. The sensitivity computed as a by-product of MPP-
based methods is 

∂β
αi = ∂ui 

(4) 

measures the change in the safety index with respect to 
the standard normal variate u.  Although useful for 
providing an importance ranking, this sensitivity is
difficult to use in design because u is a function of the 
variable's mean, standard deviation, and distribution. 
Two other sensitivities that are more useful for design 
(and for importance ranking as well) include 

Sµ =
∂pI σ i (5)
∂µi pI 

which measures the change in the probability of
exceedance with respect to the mean value; and 

Sσ =
∂pI σ i (6)
∂σ i pI 

which measures the change in the probability of
exceedance with respect to the standard deviation. 
Multiplying by σi and dividing by pI  non-
dimensionalizes and normalizes the sensitivity to
facilitate comparison between variables. The 
sensitivities given by Equations 5 and 6 are computed 
for both component and system probabilistic analysis. 

The four random variables are radius of the vessel wall 
(radius), thickness of the vessel wall (thickness), 
modulus of elasticity (E), and yield stress (Sy) of the
HSLA steel. A summary of the probabilistic inputs is
included in Table 1. The properties for radius and 
thickness are based on a series of quality control 
inspection tests that were performed by the vessel 
manufacturer. The coefficients of variation for the 
material properties are based on engineering judgment. 

In this case, the material of the entire vessel, excluding
the bolts, is taken to be a random variable. 

Table 1: Probabilistic inputs for the containment 
vessel random variables 

Variable PDF σ µ COV 

Radius (in) Normal 37.0 0.0521 0.00141 
Thick (in) Lognormal 2.0 0.08667 0.04333 

E (lb/in2) Lognormal 29.0E+06 1.0E+06 0.03448 
Sy (lb/in2) Normal 106.0E+03 4.0E+03 0.03774 

When the thickness and radius random variables are 
perturbed, the nodal coordinates of the finite element 
model change with the exception of the three access 
ports in the vessel, which remain constant in size and 
move only to accommodate the changing wall 
dimensions. This was accomplished in NESSUS by
defining a set of scale factors that defined how much 
and in what direction each nodal coordinate was to 
move for a given perturbation in both the thickness and 
radius. These effects are cumulative so that thickness 
and radius can be perturbed simultaneously.  Once 
these scale factors are defined and input to NESSUS, 
the probabilistic analysis, whether simulation or 
AMV+, can be performed without further user 
intervention. 

The response metric for the probabilistic analysis is the 
maximum equivalent plastic strain occurring over all 
times at the bottom of the vessel finite element model. 
Using NESSUS, the iterative Advanced Mean Value 
(AMV+) method was used to calculate a CDF for 
equivalent plastic strain. Also, Latin Hypercube 
Simulation (LHS)[11] with 100 samples was performed 
to verify the correctness of the AMV+ solution near the 
mean value. The CDF is plotted in Figure 6 on a linear 
probability scale and in Figure 7 on a standard normal 
probability scale. As shown, the LHS and AMV+ 
results are in excellent agreement. For far fewer finite 
element model evaluations, the AMV+ solution is able 
to predict probabilities in the extreme tail regions. If 
failure were to be assumed when the equivalent plastic 
strain exceeded some critical value, then the CDF 
shown in Figures 6 and 7 directly provide non-failure 
probabilities, i.e., probability of failure 
(p f ) = 1 − CDF . 

As shown in Figure 7, the CDF approaches an 
asymptotic state above about u = 2. This is because 
beyond u = 2, the vessel wall thickness becomes so thin 
that the deterministic model is unable to compute a 
converged solution. Although not simulated here, this 
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condition would suggest catastrophic failure such as 
rupture or fracture. 

Figure 6: CDF for equivalent plastic strain at the 
bottom of the containment vessel. 

Figure 7: CDF for equivalent plastic strain plotted in 
standard normal space. 

Probabilistic sensitivities (∂β / ∂µi )σ i  and 

(∂β / ∂σ i )σ i  are shown in Figures 8 and 9 
respectively. The subscript i refers to the particular 
random variable and beta (β ) , the safety index, is 
inversely proportional to pf through the relationship 
p f = Φ(−β )  where Φ is the standard normal CDF. 

The sensitivities are multiplied by σ i  to 
nondimensionalize the values and facilitate a relative 
comparison between parameters. Finally, the values 
are normalized such that the maximum value is equal to 
one. 

Figure 8. Probabilistic sensitivity with respect to mean 
(u = 3). 

Figure 9. Probabilistic sensitivity with respect to 
standard deviation (u = 3). 

The sensitivities shown in Figures 8 and 9 indicate how 
a change in the mean and standard deviation of each 
random variable will affect the computed probability.
These results can also be used to eliminate unimportant 
variables from the random variables considered thus 
improving computational efficiency, or conversely, 
where resources could most effectively be focused. As 
shown, thickness contributes the most to the computed 
probability. This suggests that the most effective 
strategy for reducing (or at least controlling) the 
reliability of the vessel would be to control the 
thickness of the material. 

4.  SUMMARY 

The work presented here represents an ongoing effort at
Los Alamos National Laboratory to move towards 
increased reliance on numerical simulation and less on 
testing as part of the Stockpile Stewardship program. 
The containment vessel was selected for analysis
because of the safety and mission critical nature in 
performing and containing small-scale dynamic 
experiments. 

6 
American Institute of Aeronautics and Astronautics 



The paper demonstrates the successful application of
the probabilistic analysis program NESSUS to a large 
ASCI scale problem (>1M elements) for the first time 
demonstrating its usefulness for LANL-type problems. 
Extensive modifications to NESSUS have been made 
to facilitate these calculations including the ability to 
link any number of numerical and/or analytical models 
together, support for parallel and batch job execution, 
and the inclusion of a graphical user interface that runs 
on all laboratory hardware. Future work may include 
additional testing to improve the characterization of the 
vessel thickness, coupling the hydrocode simulation of 
the detonation event with the structural response 
simulation, and incorporating alternative different 
failure models (fracture, burst, etc). 
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